Vit. artikkel

Publisert

  • 2019

Exposure to metal oxide nanomaterials potentially occurs at the workplace. We investigated the toxicity of two Fe-oxides: Fe2O3 nanoparticles and nanorods; and three MFe2O4 spinels: NiZnFe4O8, ZnFe2O4, and NiFe2O4 nanoparticles. Mice were dosed 14, 43 or 128 μg by intratracheal instillation. Recovery periods were 1, 3, or 28 days. Inflammation – neutrophil influx into bronchoalveolar lavage (BAL) fluid – occurred for Fe2O3 rods (1 day), ZnFe2O4 (1, 3 days), NiFe2O4 (1, 3, 28 days), Fe2O3 (28 days) and NiZnFe4O8 (28 days). Conversion of mass-dose into specific surface-area-dose showed that inflammation correlated with deposited surface area and consequently, all these nanomaterials belong to the so-called low-solubility, low-toxicity class. Increased levels of DNA strand breaks were observed for both Fe2O3 particles and rods, in BAL cells three days post-exposure. To our knowledge, this is, besides magnetite (Fe3O4), the first study of the pulmonary toxicity of MFe2O4 spinel nanomaterials.

Hadrup, Niels; Saber, Anne T.; Kyjovska, Zdenka O.; Jacobsen, Nicklas R.; Vippola, Minnamari; Sarlin, Essi; Ding, Yaobo; Schmid, Otmar; Wallin, Håkan; Jensen, Keld A. ; Vogel, Ulla
Environmental Toxicology and Pharmacology 74
Les publikasjon