Plasma membrane is an early target of polycyclic aromatic hydrocarbons (PAH). We previously showed that the PAH prototype, benzo[a]pyrene (B[a]P), triggers apoptosis via DNA damage-induced p53 activation (genotoxic pathway) and via remodeling of the membrane cholesterol-rich microdomains called lipid rafts, leading to changes in pH homeostasis (non-genotoxic pathway). As omega-3 (n-3) fatty acids can affect membrane composition and function or hamper in vivo PAH genotoxicity, we hypothesized that addition of physiologically relevant levels of polyunsaturated n-3 fatty acids (PUFAs) might interfere with B[a]P-induced toxicity. The effects of two major PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), were tested on B[a]P cytotoxicity in the liver epithelial cell line F258. Both PUFAs reduced B[a]P-induced apoptosis. Surprisingly, pre-treatment with DHA increased the formation of reactive B[a]P metabolites, resulting in higher levels of B[a]P-DNA adducts. EPA had no apparent effect on B[a]P metabolism or related DNA damage. EPA and DHA prevented B[a]P-induced apoptotic alkalinization by affecting Na+/H+ exchanger 1 activity. Thus, the inhibitory effects of omega-3 fatty acids on B[a]P-induced apoptosis involve a non-genotoxic pathway associated with plasma membrane remodeling. Our results suggest that dietary omega-3 fatty acids may have marked effects on the biological consequences of PAH exposure.
Hjem Publikasjon Protective action of n-3 fatty acids on b[...]
Protective action of n-3 fatty acids on benzo[a]pyrene-induced apoptosis through the plasma membrane remodeling-dependent NHE1 pathway
Béatrice Dendele; Xavier Tekpli; Kevin Hardonniere; Jørn Andreas Holme; Laure Debure; Daniel Catheline; Volker M Arlt; Eszter Nagy; David H Phillips; Steinar Øvrebø; Steen Kristen Mollerup; Mallory Poët; Martine Chevanne; Vincent Rioux; Marie-Thérèse Dimanche-Boitrel; Odile Sergent; Dominique Lagadic-Gossmann