Assessment of exposure to fungi has commonly been limited to fungal spore measurements that have shown associations between fungi and development or exacerbation of different airway diseases. Because large numbers of submicronic fragments can be aerosolized from fungal cultures under laboratory conditions, it has been suggested that fungal exposure is more complex and higher than that commonly revealed by spore measurements. However, the assessment of fungal fragments in complex environmental matrix remain limited due to methodological challenges. With a recently developed immunolabeling method for field emission scanning electron microscope (FESEM), we could assess the complex composition of fungal aerosols present in personal thoracic samples collected from two Norwegian sawmills. We found that large fungal fragments (length >1 µm) dominated the fungal aerosols indicating that the traditional monitoring approach of spores severely underestimate fungal exposure. The composition of fungal aerosols comprised in average 9% submicronic fragments, 62% large fragments, and 29% spores. The average concentrations of large and submicronic fragments (0.2–1 µm) were 3 × 105 and 0.6 × 105 particles m−3, respectively, and correlated weakly with spores (1.4 × 105 particles m−3). The levels of fragments were 2.6 times higher than the average spore concentration that was close to the...
Home Publications Fungal fragments and fungal aerosol compo[...]
Fungal fragments and fungal aerosol composition in sawmills
Afanou, Komlavi Anani; Wijnand, Eduard; Johnsen, Helle Laier; Straumfors, Anne